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Abstract

This report reviews various test techniques published in the literature for evaluating carbon
fiber via the single-filament tensile test, the dry bundle test, the resin-impregnated strand test, and
the single-fiber fragmentation test (optical microscopy and acoustic emission). Experimental
procedures, data analysis, and statistical tensile strength theory are also described. Each
technique is followed by a discussion of the advantages and limitations. Furthermore, a materials
property database has been developed that includes mechanical properties for several
commercially available carbon fibers.
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1. Introduction

This is part one of a two-part review of the physical properties of high-performance,
Polyacrylicnitrile (PAN) based carbon fibers, and the techniques used in characterizing those
properties. This report reviews the most common test methods used to determine the tensile
properties and the statistical strength distribution of fibers—the single-filament tensile test, the
tow test (dry bundle and resin-impregnated tow test), and the single-filament fragmentation test
(optical microscopy and acoustic emission). This part of the study also contains the updated
physical properties of the most popular PAN-based carbon fibers currently available on the
market (see the Appendix). The second part of the study will discuss other characterization
techniques used in determining the microstructures of the fibers and the relationship between
these fine structures and the tensile properties of carbon fibers. The purpose of this review is to
provide guidance for testing fibrous reinforcements. In addition, this report will serve as a

resource for the properties of selected carbon fiber materials.

2. Test Techniques

2.1 Single-Filament Tensile Test. The first test used in determining tensile properties of
carbon fibers is the single-filament tensile test. This test requires carefully extracting an
individual carbon fiber from a tow, and great effort goes into aligning the test fiber axially. The

test also calls for a significant number of samples for statistical analysis.

The following test procedure follows the ASTM Standard D3379 (American Society for
Testing and Materials 1989). Individual fibers are randomly selected from a tow, and each fiber
is carefully center-line mounted on a thin paper tab, as shown in Figure 1. Fibers are held in
place by adhesive at the edges of slots in the tab. The slot length is the gage length of the test
specimen, which is usually between 20 and 30 mm. The tab should be about three times longer
than the specimen’s gage length and half of the width of the gage length. In a tensile test device,
the prepared specimen is then axially gripped at the tab ends. If the direct strain measurement of
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Figure 1. Single-Fiber Mounting Tab.

the specimen gage section is not possible, the compliance of the test device should be

determined. The true compliance can then be calculated for determining Young’s modulus.

2.1.1 Diameter Measurement. It is necessary to measure fiber diameter to calculate strength
and modulus. Several methods are available, such as the optical microscope, the scanning
electron microscope (SEM), and laser diffraction. Studies have shown that optical microscopic
measurements tend to have a higher standard deviation than other methods (Chen and Diefendorf
1982). SEM methods can produce precise measurements of fiber diameter, but the procedure
requires more sample preparation and image manipulation. This technique is also not practical
for measuring the diameters of specimens to be tested. Fukuda et al. (1993) found that a laser
diffraction method was most suitable for the 1 x 1 diameter measurements of the fibers to be
tested. In this technique, fiber diameters are determined by measuring the distance between dark
spots of the diffraction pattern, as in Figure 2.

The diameter, d, is calculated as follows:
d= VR (l)

where L is the distance between the specimen and the screen, A is the wavelength of the laser

light, and 1 is the distance between dark spots.
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Figure 2. Schematic View of Laser Diffraction Diameter Measurement (Fukuda et al.
1993).

2.1.2 Statistical Tensile Strength. Unlike metals whose strengths are more deterministic,
the strcngtlls of brittle fibers are known to exhibit great variation between individual fibers, as
well as along a fiber length. Hence, statistical models are most appropriate to describe strength
distributions of fibers, and the best known model in composite strength theory has been the
Weibull distribution (Chou 1992). The Weibull distribution of fiber strength, O'f,' has the

following form:

P (of) =1- CXP[_L(Gf/Oo)BJ’ 2

where P is the cumulative probability of failure of a fiber of length L at a stress level =2 or. The
Weibull scale parameter is 0o, and P is the Weibull shape parameter reflecting the scattering of
strength data. Based on experimental data, values of strength parameters oo and f can be
determined by various approaches (Manders and Chou 1983). One of these approaches is

discussed in the next section. The mean fiber strength can then be calculated by the equation
G =o,LYPT (1 + 1/B) 3)

where I' denotes the gamma function.




2.1.3 Strength of Fibers at Short Lengths. The strengths of fibers also strongly depend on
fiber lengths, as shown in equation 3. Often, knowing fiber strengths at very short lengths is
crucial, especially in analyzing the fiber-matrix interfacial strength in composites. Testing very
short fibers, however, is not feasible with the single-filament tensile test, due to problems with
specimen gripping and alignment. Many attempts have been made to extrapolate strengths of
short fibers from longer specimens with limited success. Most of these extrapolation methods |
rely on the assumption that Weibull parameters oo and B are length independent. However,
Asloun et al. (1989) found through their experimental data that Weilbull parameters varied with
fiber length. Their study also showed that for extrapolating fiber strengths at short lengths, the
most accurate and simple method was by means of the linear logarithmic dependence of strength

on gage length. By taking the logarithm on both sides, equation 3 becomes
Ln(@,)= CYBnL + 1n[o, T (1 + YB)) | 4

The plot of mean fiber strengths vs. gage lengths in a logarithmic scale produces a straight
1iné (Figure 3), which could be extended to estimate fiber strengths at short lengths. The slope of
the line is the value of (-1/B), and the value of oy is derived from the y intercept. Mean fiber
tensile strengths can simply be averaged from the experimental sample size of about 20. It can
also be estimated if values of 6o and B are known. To achieve good extrapolation results, fiber
tensile tests should be performed at many different gage lengths (at least seven), and there should
be a sample size of about 20 for each gage length (Asloun et al. 1989). The validity of this
method was confirmed in previously published data (Manders and Chou 1983; Goggin 1975;
Barry 1978; Hitchon and Phillips 1979; Jones et al. 1980).

2.1.4 Discussion. Although the single-filament tensile test method can provide good tensile
properties data and requires simple analysis, it has several disadvantages. The method is very
tedious and labor intensive. A large sample‘ size of about 20 is also required for a good statistical
analysis. Because it is not always possible to directly measure fiber elongatioh, the compliance

of tensile test devices should be determined. The experimental results could also be
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Figure 3. Mean Tensile Fiber Strength vs. Gage Length in Log Scale.

overestimated since only the strong fibers are extracted for tensile tests. Weak fibers break prior
to testing and are discarded during sample preparation. In addition, a tensile test of very short
fibers (<1 mm) is almost impossible. As a result, extrapolation techniques must be used, and
they are usually unreliable. Another test method, the single-fiber fragmentation (discussed in

section 2.3), may resolve many of these issues.
2.2 Fiber Tow Test.

2.2.1 Dry Bundle (Tow) Test. Because of the high degree of scattering in strengths of brittle
carbon fibers, a large number of specimens are needed for good statistical analysis. With the
fiber dry bundle test, this problem is minimized. Since the failure of each fiber bundle is the
result of independent fractures of many fibers, there is much less data scattering for single fibers.
Therefore, a smaller number of tests is required to achieve statistically valid data. Experimental
data indicated that Weibull strength parameters determined from dry bundle tests are very similar
to single-fiber tests (Manders and Chou 1983).

The following steps are typical experimental procedures. Fiber tows of different lengths

(usually between 5 and 10 tows for each gage length) are cemented into grooved end tabs. There




should be no slack in any of the fibers. The cross-sectional area of the tow can be determined
from the manufacturer’s data of density and mass per unit length. All fibers are assumed to have
the same diameter. The tows are then tested using a tensile test device. Tensile properties are
determined from load and strain data similar to the procedure outlined in ASTM Standard D4018
(American Society of Testing and Materials 1993). The statistical analysis of a dry bundle test is
similar to that discussed in section 2.1.3. The rhean strengths of fiber tows (at different lengths)
are plotted against corresponding lengths in logarithmic scale. The plot should approximate a
straight line whose slope is -1/B. Calculated from the y-intercept is 6p. Mean fiber strengths

can then be estimated from the determined Weibull parameters (equation 3).

2.2.2 Resin-Impregnated Tow Test. A more common and efficient method for determining
tensile properties of carbon fiber is the resin-impregnated tow test. This technique is also better
than the single-filament tensile method in the sense that fiber properties are measured in an
environment more compatible to real composite parts. Experimental data shows that the fiber
Young’s moduli determined from the strand test method was closer to that obtained from
composite data (Kowalski 1988).

The following procedure follows ASTM Standard D4018. Tows of carbon fibers are dipped
into a compatible resin system and then worked over rollers or dies to squeeze out excess resin.
The resin content should be between 35% and 60% by weight. The resin should also have
greater strain-to-failure than the fibers so that it will not affect the evaluation of fiber-tensile
properties. The main role of the resin is to provide enough support for specimen handling and a
better, more uniform loading among fibers during the tensile test. A recommended system is a
combination of bisphenol F epoxy and diethyltoluene diamine (3.9:1 by weight).
Resin-impregnated strands are then cured under slight tension. If tabs are used, the distance
between tabs should be 150 mm; otherwise, that would be the distance between the test grips.

Tensile properties are calculated from load and strain data.

2.2.3 Discussion. Tow tests have several distinct advantages over single-filament tests. It is

more practical to handle carbon fiber tows than single filaments, and similar experimental results




can be achieved in the case of the dry bundle test. In addition, due to less strength scattering in
dry bundles, a smaller sample size is needed for testing. For the resin-impregnated tow test, the
ease in specimen handling also makes direct strain measurements possible. Measured tensile
properties are closer to those of composites, since fibers are surrounded by a polymer matrix.
The trade-off is the deviation from the actual values of fiber-tensile properties. Thus, it is
important to select a resin system that is compatible to the particular carbon fiber and greater in

strain capability.

2.3 Single-Fiber Fragmentation Test. The single-fiber fragmentation test offers yet
another technique for determining the strength of fibers, especially very short fibers, which has
always been an obstacle in other methods. Similar to the resin-impregnated tow fest, another
advantage of the fiber fragmentation test is that it produces actual composite material data. The
amount of data generated by the test is also much larger, making it more suitable for statistical

analysis.

In a fragmentation test, a single fiber embedded in resin is strained, while the fiber repeatedly
fractures into shorter and shorter fragments due to increasing stress. Because there are many
fiber breaks in a single test, an abundance of data is produced in one fragmentation test. The

fragmentation test is based on the following simple modification of equation 2:

P,(1)=1- P, (0) = exp|-L(o, /0, ¥ ®)

where Pg(l) is the survival cumulative probability of fibers at different specified lengths, 1.
Taking the logarithm of both sides,

In(®,) = -L(o, /o, J- ©
Thus, by knowing the cumulative probability that the fiber fragments are greater than or equal to

a specified length, the plot of In(Ps) vs. L can be obtained. The plot should be linear, with a
gradient equal to -(o¢/ c;o)B (see Figure 4). '
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Figure 4. Logarithm of Cumulative Probability That a Fiber Fragment Is Greater or
Equal to a Specified Length, In(P,), vs. the Spacing of Fractures, L (Manders and
Chou 1983).

These values of gradient are plotted against their corresponding levels of stress or strain
(assuming linearly elastic fiber). The plot of In(gradient) vs. In(cy) or In(gg) will then give the
slope of value B and the y intercept of value ©;. Because the embedded fiber in the
fragmentation test can fracture into very short segments, the values of P and o, are the actual
Weibull parameters of short fibers and are not obtained from extrapolation. Mean fiber strengths

are calculated from these strength parameters according to equation 3.

Although there is no standardized procedure for the fragmentation test, various experimental
procedures in the literature (Baillie and Bader 1994; Yavin et al. 1991; Gulino and Phoenix
1991; Waterbury and Drzal 1991; Waterbury 1990) follow these essential steps:

(a) A long fiber (longer than 50.8 mm) is carefully selected from a bundle and handled only
by its ends. The fiber is then mounted on a silicon rubber mold. The mold is a standard
ASTM 50.8-mm long dogbone cavity 3.175-mm wide x 1.587-mm thick x 25.4-mm long
at the gage section. The mold cavity has sprue slots at each end to align and center the
fiber axially. Once aligned, the fiber is held in place with fast curing epoxy in the sprue

slots.




(b) A resin system with greater strain-to-failure than the fiber (at least three times greater) is
then either poured or pipetted into the mold cavity. Air bubbles in the resin can be

avoided by degassing the mold and resin in a vacuum oven before filling the cavity.

©) “The mold is placed in an oven and the resin is cured with the appropriate cure cycle; the

specimen is then removed with great care to avoid damaging the embedded fiber.
(d) The specimen is tested at small strain increments using a microstraining machine.

To determine the cumulative probability, Ps, of fiber fragments in the fragmentation test, the
number of fragments and their lengths need to be measured and ranked at each strain level.
Currently, there are two different techniques in this data acquisition—optical microscopy and

acoustic emission.

2.3.1 Optical Microscopy Data Acquisition. For the optical microscopy technique, the
number of fiber fragments and their lengths are measured at each strain level by a traveling
microscope that moves along the fractured fiber. Measurements can also be done by mounting
the microstraining device on the optical microscope during the translation stage. The optical
resolution of the microscope should be powerful enough to identify the microfractures in the
fiber. This procedure, however, can take hours to perform. In attempts to improve the speed of
data acquisition, Waterbury and Drzal (1991) developed a technique with some automated
features that could reduce the data acquisition time by an order of magnitude. Their system
includes a computer-interfaced translation stage and a computer program that performs data
processing. After each strain increment, the stage is translated at a constant rate while the
fractured fiber is observed under the microscope. As fractures pass a set of cross hairs, the
operator clicks the mouse and sends timing signals to the computer. The elapsed time between
fractures is converted into fragment lengths by the software. Statistical analysis, fiber strength,

and interfacial shear strength are also readily performed.




2.3.2 Acoustic Emission Data Acquisition. Despite many advantages over conventional
methods, the optical microscopy technique has many shortcomings. First, the selected resin must
be transparent so that the embedded fiber can be observed under the light microscope. Second,
the strained fiber has to remain strained for a long time during the fragment length measurement.
This step can induce creep in the specimen, as shown by Clough and McDonough (1996). Third,
it is sometimes very difficult to identify the small gaps between fiber fragments, which are
usually <1 pm. The acoustic emission technique could potentially surmount these problems. In
this technique, the fiber breaks are determined by detecting the burst of acoustic emission from
each fracture. Some variations of this technique monitor acoustic source locations to determine -
the fragment lengths. Expensive equipment, however, is required. A simpler and more efficient
technique was developed by Clough and McDonough of the National Institute of Standards and
Technology. Based on the fragmentation theory (Gulino and Phoenix 1991), Clough and
McDonough further siinplified the analysis under the condition of low-applied fiber stress, o, or
applied strain, & (which was measured here). The following equation is derived:

N = (o, /a, F, | ¥

where N is the number of detected fiber breaks. Thus, the only information needed is the
number of breaks and the levels of applied stress or strain. Values of Weibull parameters can be

determined from the plot of In(N) vs. In(cy) or In(gy).

To monitor break events, an acoustic emission transducer is attached to the gage section of
the specimen. As the specimen is strained at a slow rate (approximately 5 x 107 s7!), the
emission signals are amplified and recorded continuously by a computer. To avoid yielding, the
applied strain should not exceed 2%. After a test, the entire signal.recording is postprocessed
with a median subtraction filter (Barnett 1989). This particular filter method greatly enhances

the trigger signal and is able to filter out noise, but not emission events.

2.3.3 Discussion. The single-fiber fragmentation test is a better method for evaluating fiber

strengths at short gage lengths. Experimental data is also more accurate because the

10




fragmentation test is an in-situ method. The fiber is fractured in a real composite environment.
In a single test, a typical 25-mm fiber fractures about 50 times, which is equivalent to 50 single
fiber tests (Waterbury and Drzal 1991). The fragmentation test, therefore, is able to generate a
much larger amount of test data than other methods. Yet, the test time can be significantly
reduced. In the acoustic emission technique by Clough and McDonough (1996), the amount of

time required for each test is a minute or less.

Optical microscopy and acoustic emission techniques both produce close experimental
results. The optically monitored method, however, requires more human interaction. In
addition, the loriger test time can cause creep in the specimens, generating error in the data. The
acoustic emission technique overcomes the problems of visibility and creep since data is
acoustically collected at the precise stress/strain level and not after each stress/strain increment,
as in the optical technique (Clough and McDonough 1996). The equipment used for detecting
acoustic emission, however, must be very sensitive and capable of filtering out background
noise. Despite this, the technique could still be vulnerable to error due to simultaneous, multiple

fiber fractures.

3. Conclusion

Each of the test techniques has its own unique advantages and limitations. No single
technique is completely superior to others in all aspects. The dry bundle test is relatively better
in determining average strengths of fiber and statistical parameters of longer fibers. For more
accurate values of Young’s modulus, however, the resin-impregnated strand test with an
appropriate resin system is better. The single-fiber fragmentation technique is by far the best
method for generating a large amount of data for statistical analysis, and it generates better

accuracy of fiber strengths at very short lengths.
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As a part of this report, a database containing information on selected PAN-based carbon
fibers was created using the database software MicroSoft Access. The software allows fast fiber
selection by criteria on physical properties such as modulus, strength, density, fiber diameter,
and CTE, as well as on manufacturers’ information (Figure A-1). If a user wants to select
particular fibers of modulus >350 GPa, a simple query can be entered, as shown in Figure A-2.
The database then conveniently produces selections quickly (Figure A-3). Also included is
updated price information on these high-performance fibers. The mechanical properties of the
fibers are provided by the producers of the fibers, and the resin-impregnated strand test is
typically used. This database is available from the Polymer Research Branch of the U.S. Army
Research Laboratory-Weapons and Materials Research Directorate (ARL-WMRD), Aberdeen
Proving Ground, MD.

Figure A-1. Data of Selected High-Performance Carbon Fibers in the Database.
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